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1. Introduction  

         In recent papers [1-2], particular and unique solutions 
of the Dokshitzer- Gribov- Lipatov- Altarelli- Parisi 
(DGLAP) [3-6] evolution equations for t and x-evolutions of 
singlet and non-singlet structure functions in leading order 
(LO) and next-to-leading order (NLO) at small-x have been 
reported. The same technique can be applied to the DGLAP 
evolution equations for gluon structure function in LO to 
obtain t and x-evolutions of gluon structure function. These 
LO results are compared with a recent global 
parameterization [7-8]. Here Section 1, Section 2, and 
Section 3 will give the introduction, the necessary theory 
and the results and discussion respectively. 

2. Theory 

The DGLAP evolution equation for gluon structure 
function has the standard form [9] as 
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         Let us introduce the variable u = 1-w and note that [10] 
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The series (3) is convergent for |u|<1. Since x<w<1, so 
0<u<1-x and hence the convergence criterion is satisfied. 
Now, using Taylor expansion method [11] we can rewrite G 
(x/w, t) as 
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which covers the whole range of u, 0<u<1-x. Since x is small 
in our region of discussion, the terms containing x2 and 
higher powers of x can be neglected as our first 
approximation as discussed in our earlier works [1-2, 12-14] 
and G(x/w, t) can be approximated for small-x as                                                                                                                                      
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Similarly, F2S(x/w, t) can be approximated for small-x as 
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Using equations (5) and (6) in equations (1) and (2) and 
performing u-integrations we get 
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For simplicity we assume [1-2]  

G(x, t) = K(x) F2S (x, t), where K(x) is a function of x. 
Therefore 

),()(1),(2 txGxKtxSF = , where K1(x) = 1/ K(x).                    (8) 

Now equation (7) becomes 
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          The general solutions of equations (9) is [11, 15] F (U, 
V) = 0, where F is an arbitrary function and U(x, t, G) = C1 
and V(x, t, G) = C2 form a solution of equations                                                                                                                                           
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Solving equation (10) we obtain 
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If U and V are two independent solutions of equation (10) 
and if α and β are arbitrary constants, then V= αU+ β may 
be taken as a complete solution of equation (10). Now the 
complete solution [13-14] 
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is a two-parameter family of surfaces, which does not have 
an envelope, since the arbitrary constants enter linearly 
[11]. Differentiating equation (11) with respect to β we get 0 
= 1, which is absurd. Hence there is no singular solution. 
The one parameter family determined by taking β = α2 has 
equation 
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Differentiating equation (12) with respect to α, we get 
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equation (12), we obtain the envelope 
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which is merely a particular solution of the general 
solution. Now, defining 
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t0 = ln (Q02/Λ2) at any lower value  

Q = Q0, we get from equation (13)                                                      
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which gives the t-evolution of gluon structure function G(x, 
t). Again defining,                                                                                      
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which gives the x-evolution of gluon structure function G(x, 
t). 

            For the complete solution of equation (9), we take β = 
α2 in equation (11). If we take β = α in equation (11) and 
differentiating with respect to α as before, we get 
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determine the value of α. But if we take β = α3 in equation 
(11) and differentiating with respect to α, we get 

,
)(

11
exp

3

1

















∫−= dx
xQfA

tα   from which we get, 

( ) ( ) 2

3

0
0,,














=

t

t
txGtxG  and 

 ( ) ( )


















∫


















−= dx
x

x xQ

xP

xQfA
txGtxG

0
)(

)(

)(
2

3

exp,0,  as before which 

are t and x-evolutions respectively of gluon structure 
function for β = α3. 

               Proceeding exactly in the same way, we can show 
that if we take β = α4 we get 
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general, if we take β = αy, we get 
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αy. We observe if y→∞ (very large), y/(y-1) →1. 

            Thus we observe that if we take β = α in equation 
(11) we can not obtain the value of α and also the required 

solution. But if we take β = α2, α3, α4, α5….. and so on, we see 
that the powers of (t/t0) in t-evolutions of gluon structure 
functions are 2, 3/2, 4/3, 5/4….and so on respectively as 
discussed above. Similarly, for x-evolutions of gluon 
structure functions we see that the numerators of the first 
term inside the integral sign are 2, 3/2, 4/3, 5/4….and so on 
respectively for the same values of α. Thus we see that if in 
the relation β = αy, y varies between 2 to a maximum value, 
the powers of (t/t0) and the numerators of the first term in 
the integral sign vary between 2 to 1. Then it is understood 
that the solution of equations (9) obtained by this 
methodology is not unique and so the t and x-evolution of 
gluon structure function obtained by this methodology is 
not unique. Thus by this methodology, instead of having a 
single solution we arrive a band of solutions, of course the 
range for these solutions is reasonably narrow.    

               Again, for Q2 values much larger than Λ2, the 
effective coupling is small and a perturbative description in 
terms of quarks and gluons interacting weakly makes 
sense. For Q2 of order Λ2, the effective coupling is infinite 
and we cannot make such a picture, since quark and gluons 
will arrange themselves into strongly bound clusters, 
namely, hadrons [16]. Also the perturbation series breaks 
down and structure functions must vanish [17]. Thus, Λ can 
be considered as the boundary between a world of quasi-
free quarks and gluons, and the world of pions, protons, 
and so on. The value of Λ is not predicted by the theory; it 
is a free parameter to be determined from experiment. It 
should expect that it is of the order of a typical hadronic 
mass [16]. The value of Λ is so small that we can take at Q = 
Λ, F2S,(x, t) = 0 due to conservation of the electromagnetic 
current [18]. Since the relation between gluon and singlet 
structure function is G(x, t) = K1(x)F2S (x, t), therefore G(x, t) 
= 0 at Q = Λ. Using this boundary condition in equations 
(11) we get β = 0 and   
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(17)                                                       

which gives the t-evolution of gluon structure function G(x, 
t)  in LO. Again defining,   
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which gives the x-evolution of gluon structure function G(x, 
t) in LO. We observed that unique solutions (equations (17) 
and (18)) of DGLAP evolution equation for gluon structure 
function are same with particular solutions for y maximum 
in β = αy relation in LO.  

 

3. Results and discussion 

        In the present paper, we present our result of t-
evolution of gluon structure function qualitatively and 
compare result of x-evolution with a recent global 
parameterization [7-8]. These parameterizations include 
data from H1, ZEUS, DO, CDF experiment. Though we 
compare our results with y = 2 and y = maximum in β = αy 
relation with the parameterization, our result with y = 
maximum is equivalent to that of unique solution. 

             In figure 1(a-b), we present our results of t-
evolutions of gluon structure functions G(x, t) qualitatively 
for the representative values of x given in the figures for y = 
2 (upper solid and dashed lines) and y maximum (lower 
solid and dashed lines) in β = αy relation. We have taken 
arbitrary inputs from recent global parameterizations 
MRST2001 (solid lines) and MRST2001J (dashed lines) in 
figure 1(a) at Q02= 1 GeV2 [7] and MRS data in figure 1(b) at 
Q02 = 4 GeV2 [8]. It is clear from figures that t-evolutions of 
gluon structure functions depend upon input G(x, t 0) 
values.   
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Fig. 1(a-b): Results of t-evolutions of gluon structure 
functions for the representative values of x given in the 
figures for y = 2 (upper solid and dashed lines) and y 
maximum (lower solid and dashed lines) in β = αy relation. 
We have taken arbitrary inputs from recent global 
parameterizations MRST2001 (solid lines) and MRST2001J 
(dashed lines) in figure 1(a) and MRS data in figure 1(b) at 
Q02 = 1 GeV2 and Q02 = 4 GeV2 respectively. For convenience, 
value of each data point is increased by adding 9 and 4 for x 
= 0.01 and x = 0.05 respectively in figure 1(a) and decreased 
by subtracting 1 for x = 0.1 in figure 1(b).      

         

        For a quantitative analysis of x-distributions of gluon 
structure functions G(x, t), we calculate the integrals that 
occurred in equation (15) for Nf  = 4. In figure 2(a-b), we 
present our results of x-distribution of gluon structure 
functions for K1(x) = axb , where ‘a’ and ‘b’ are constants, for 
representative values of Q2 given in each figure, and 
compare them with recent global parameterizations [7] for 
y minimum in the relation β=αy.  In figure 2(a), we observe 
that agreement of the results with parameterization is 
found to be very poor for any values of ‘a’ and ‘b’ at low-x 
and agreement is found to be good at high-x at a = 372 and b 
= 4 (thick solid line).  In figure 2(b), agreement of the results 
with parameterizations is found to be good at a = 135 and b 
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= 1.8 (thick solid line) in β = αy relation. In the same figures 
we present the sensitivity of our results for different values 
of ‘a’ at fixed value ‘b’. Here we take b = 4 in figure 2(a) and    
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Fig. 2(a-b): Results of x-distribution of gluon structure 
functions for K1(x) = axb , where ‘a’ and ‘b’ are constants for 
representative values of Q2 given in each figure, and 
compare them with recent global parameterizations for y 
minimum (thick solid lines) in the relation β = αy. In the 
same figures we present the sensitivity of our results for 
different values of ‘a’ at fixed value ‘b’. Here we take b = 4 
in figure 2(a) and b = 1.8 in figure 2(b).  

 

b = 1.8 in figure 2(b). We observe that if value of ‘a’ is 
increased or decreased, the curve goes upward or 
downward direction respectively. But the nature of the 
curves is similar. Here thin solid and dotted lines are MRST 
2001 and MRST2001J [7] parameterizations. 

          In figure 3(a-b), we present the sensitivity of our 
results for different values of ‘b’ at fixed value of ‘a’. Here 
we take a = 372 in figure 3(a) and a = 135 in figure 3(b). We 
observe that, agreement of the results (thick solid lines) 
with parameterizations is good in figure 3(a) at b = 4 and 
figure 3(b) at b = 1.8. If value of ‘b’ is increased or decreased 
the curve goes downward or upward directions. But the 
nature of the curve is similar. 
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Fig. 3(a-b): Sensitivity of our results for different values of 
‘b’ at fixed value of ‘a’. Here we take a = 372 in figure 3(a) 
and a = 135 in figure 3(b).  

         

       In figure 4(a-b), we present our results of x-evolution of 
gluon structure function G(x, t) for K1(x) = axb for y 
minimum (lower thick solid lines) and maximum (upper 
thick solid lines) in relation β = αy at same parameter values 
a = 372, b = 4 in figure 4(a) and a = 135, b = 1.8 in figure 4(b) 
and for representative values of Q2 given in each figure, 
and compare them with recent global parameterizations [7]. 
We observe that result of x-evolution of gluon structure 
function for y maximum (long dashed lines) coincide with 
result of x-evolution of gluon structure function for y 
minimum (lower thick solid lines) when a = 375, b = 4.7 in 
figure 4(a) and a = 134, b = 2 in figure 4(b). That means if y 
varies from minimum to maximum, then value of 
parameter ‘a’ varies from 372 to 375 and ‘b’ varies from 4 to 
4.7 in figure 4(a) and ‘a’ varies from 135 to 134 and ‘b’ varies 
from 1.8 to 2 in figure 4(b). 
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Fig. 4(a-b): Results of x-evolution of gluon structure 
function G(x, t) for K1(x) = axb for y minimum (lower thick 
solid lines) and maximum (upper thick solid lines) in 
relation β = αy at same parameter values a = 372, b = 4 in 
figure 4(a) and a = 135, b = 1.8 in figure 4(b) and for 
representative values of Q2 given in each figure, and 
compare them with recent global parameterizations. Result 
of x-evolution of gluon structure function for y maximum 
(long dashed lines) coincide with result of x-evolution of 
gluon structure function for y minimum (lower thick solid 
lines) when a = 375, b = 4.7 in figure 4(a) and a = 134, b = 2 in 
figure 4(b).    

 

       In figure 5(a-b), we present our results of x-distribution 
of gluon structure functions G(x, t) for K1(x) = ce-dx , where 
‘c’ and ‘d’ are constants for representative values of Q2 
given in each figure, and compare them with recent global 
parameterizations [7] for y minimum in the relation β = αy.  
In figure 5(a), we observe that agreement of the results with 
parameterization is found to be very poor for any values of 
‘c’ and ‘d’ at low-x and agreement is found to be good at 
high-x at c = 300 and d = -3.8 (thick solid line).  In figure 5(b) 
agreement of the results with parameterizations is found to 
be good at c = 5 and d = -28 (thick solid line). In the same 

figures, we present the sensitivity of our results for 
different values of ‘c’ by thick dashed lines at fixed value‘d’. 
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Fig. 5(a-b): Results of x-distribution of gluon structure 
functions G(x, t) for K1(x) = ce-dx, where ‘c’ and ‘d’ are 
constants for representative values of Q2 given in each 
figure, and compare them with recent global 
parameterizations for y minimum in the relation β = αy. In 
the same figures we present the sensitivity of our results for 
different values of ‘c’ by thick dashed lines at fixed value 
‘d’. Here we take d = -3.8 in figure 5(a) and d = -28 in figure 
5(b).   

 

Here we take d = -3.8 in figure 5(a) and d = -28 in figure 5(b). 
We observe that if value of ‘c’ is increased or decreased, the 
curve goes upward or downward directions respectively. 
But the nature of the curve is similar. 
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Fig. 6(a-b): Sensitivity of our results for different values of 
‘d’ at fixed value of ‘c’. Here we take c = 300 in figure 6(a) 
and c = 5 in figure 6(b).  

 

          In figure 6(a-b), we present the sensitivity of our 
results for different values of ‘d’ at fixed value of ‘c’. Here 
we take c = 300 in figure 6(a) and c = 5 in figure 6(b). We 
observe that agreement of the results (thick solid lines) with 
parameterizations is good in figure 6(a) at d = -3.8, and 6(b) 
at d = -28. If value of ‘d’ is increased or decreased, the curve 
goes downward or upward direction in figure 6(a) and if 
value of ‘d’ is increased or decreased the curve goes 
upward or downward direction in figure 6(b) . But the 
nature of the curves is similar in both cases. 

         In figure 7(a-b), we present our results of x-evolution 
of gluon structure function G(x, t) for K1(x) = ce-dx for y 
minimum (lower thick solid lines) and maximum (upper 
thick solid lines) in the relation β = αy at same parameter 
values c = 300, d = -3.8 i nfigure 7(a) and c = 5, d = -28 in 
figure 7(b) and for representative values of Q2 given in each 
figure, and compare them with recent global 
parameterizations [7]. We observe that result of x-evolution  
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Fig. 7(a-b): Results of x-evolution of gluon structure 
function G(x, t) for K1(x) = ce-dx for y minimum (lower thick 
solid lines) and maximum (upper thick solid lines) in the 
relation β = αy at same parameter values c = 300, d = -3.8 in 
figure 7(a) and c = 5, d = -28 in figure 7(b) and for 
representative values of Q2 given in each figure, and 
compare them with recent global parameterizations. Result 
of x-evolution of gluon structure function, for y maximum 
(long dashed lines) coincide with result of x-evolution of 
gluon structure function for y minimum (lower thick solid 
lines) when c = 300, d = -3.6 in figure 7(a) and c = 5, d = -25.3 
in figure 7(b).  

 

of gluon structure function, for y maximum (long dashed 
lines) coincide with result of x-evolution of gluon structure 
function for y minimum (lower thick solid lines) when c = 
300, d = -3.6 in figure 7(a) and c = 5, d = -25.3 in figure 7(b). 
That means if y varies from minimum to maximum, then 
value of parameter ‘d’ varies from -3.8 to -3.6 in figure 7(a) 
and from -28 to -25.3 in figure 7(b). In these cases, value of 
parameter ‘c’ remains constant. It is to be noted that 
agreement of the results with parameterization is found to 
be very poor for any constant value of K1(x). Therefore, we 
do not present our result of x-distribution at K1(x) = 
constant. Moreover, in general, the agreement of our results 
with the parameterization at small-x is poor for low-Q2 
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value and excellent for high-Q2 value which is quite 
expected. 

         From our above discussion, it has been observed that 
though we can derive a unique t-evolution for gluon 
structure function in LO, yet we can not establish a unique 
x-evolution for gluon structure function in LO. K1(x), the 
relation between singlet and gluon structure functions, may 
be in the forms of a constant, an exponential function of x 
or a power in x and they can equally produce required x-
distribution of gluon structure functions. But unlike many 
parameter arbitrary input x-distribution functions generally 
used in the literature, our method requires only one or two 
such parameters. On the other hand, The explicit form of 
K1(x) can actually be obtained only by solving coupled 
DGLAP evolution equations for singlet and gluon structure 
functions, and works are going on in this regard. 

4. Conclusion 

            In this paper, we obtain complete and unique 
solutions of gluon distribution function at low-x using 
Taylor’s expansion method from GLDAP evolution 
equations and t and x-evolution of gluon structure 
functions in leading order. We compare our results with a 
global parameterization. In all the results from global fits, it 
is seen that, gluon structure functions increases when x 
decreases and Q2 increases for fixed values of Q2 and x 
respectively. It has been observed that, though we have 
derived a unique t-evolution for gluon in LO, yet we can 
not establish a completely unique x-evolution for gluon 
structure functions in LO due to the relation K1(x) between 
singlet and gluon structure functions.  K1(x) may be in the 
forms of an exponential function or a power function and 
they can equally produce required x-distribution of gluon 
structure functions. But unlike many parameter arbitrary 
input x-distribution functions generally used in the 
literature, our method requires only one or two such 
parameters. 
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